# **Specification of Thermoelectric Module**

**TEC1-19908S** 

# **Description**

The 199 couples, 50 mm  $\times$  55 mm size single module which is made of our high performance ingot to achieve superior cooling performance and 70  $^{\circ}$ C or larger delta Tmax, is designed for superior cooling and heating applications. Beyond the standard below, we can design and manufacture the custom made module according to your special requirements.

#### **Features**

- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance

# **Application**

- Food and beverage service refrigerator
- Portable cooler box for cars
- Liquid cooling
- Temperature stabilizer
- CPU cooler and scientific instrument
- Photonic and medical systems

# **Performance Specification Sheet**

| Th(°C)                     | 27    | 50    | Hot side temperature at environment: dry air, N <sub>2</sub>                                                 |  |
|----------------------------|-------|-------|--------------------------------------------------------------------------------------------------------------|--|
| DT <sub>max</sub> (°C)     | 70    | 79    | 79 Temperature Difference between cold and hot side of the module when cooling capacity is zero at cold side |  |
| U <sub>max</sub> (Voltage) | 25    | 26.9  | Voltage applied to the module at DT <sub>max</sub>                                                           |  |
| I <sub>max(</sub> amps)    | 8.5   | 8.5   | DC current through the modules at DT <sub>max</sub>                                                          |  |
| Q <sub>Cmax</sub> (Watts)  | 133.4 | 145.8 | Cooling capacity at cold side of the module under DT=0 °C                                                    |  |
| AC resistance(ohms)        | 2.25  | 2.49  | The module resistance is tested under AC                                                                     |  |
| Tolerance (%)              | ± 10  |       | For thermal and electricity parameters                                                                       |  |

## Geometric Characteristics Dimensions in millimeters

# Positive lead wire 20 AWG leads PVC Negative lead wire 125±3 Cold side:Tc See ordering option See ordering option

# **Manufacturing Options**

#### Manufacturing Options B. Sealant:

1. T100: BiSn (Tmelt=138°C)

1. NS: No sealing (Standard)

2. T200: CuAgSn (Tmelt = 217°C)

2. SS: Silicone sealant

3. T240: SbSn (Tmelt =  $240^{\circ}$ C)

3. EPS: Epoxy sealant

#### C. Ceramics:

A. Solder:

## **D. Ceramics Surface Options:**

1. Alumina (Al<sub>2</sub>O<sub>3</sub>, white 96%)

1. Blank ceramics (not metalized)

2. Aluminum Nitride (AlN)

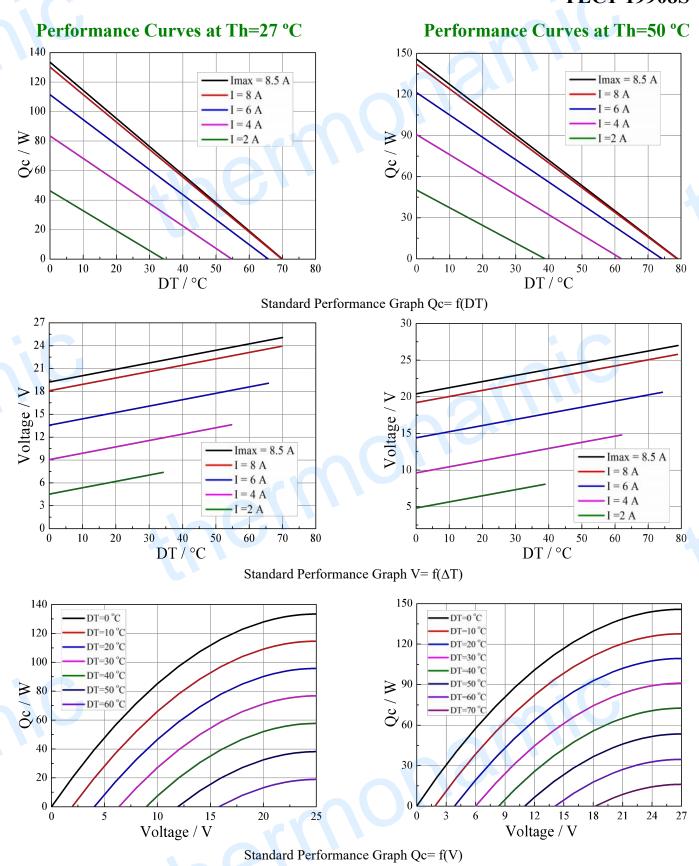
Naming for the Module

|        | 0 1        |                  |                          |  |  |
|--------|------------|------------------|--------------------------|--|--|
| Suffix | Thickness  | Flatness/        | Lead wire length(mm)     |  |  |
|        | (mm)       | Parallelism (mm) | Standard/Optional length |  |  |
| TF     | 0:3.8±0.1  | 0:0.1/0.1        | 125±3/Specify            |  |  |
| TF     | 1:3.8±0.05 | 1:0.05/0.05      | 125±3/Specify            |  |  |

**Ordering Option** 

Eg. TF00: Thickness 3.8±0.1(mm) and Flatness 0.1/0.1(mm)

TEC1-19908S- X -X - X - X

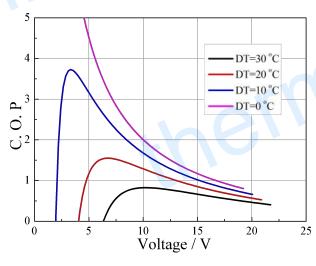

Ceramics
Flatness/Parallelism
Sealant
Solder

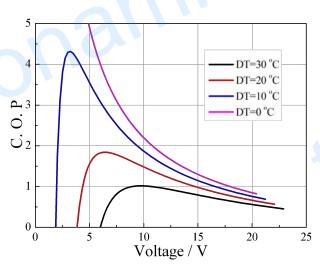
TEC1-19908S-T100-NS -TF00 -AIO
T100: BiSn(Tmelt=138°C)

NS: No sealing AlO: Alumina (Al2O3, white 96%)
TF00: Thickness ±0.1(mm) and Flatness/Parallelism: 0.05/0.05 (mm)

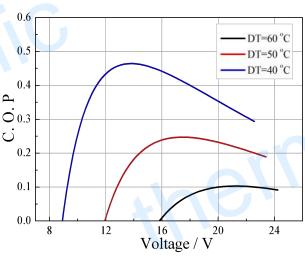
# **Specification of Thermoelectric Module**

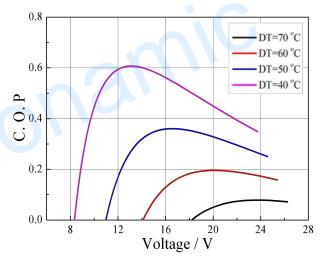
# **TEC1-19908S**





# **Specification of Thermoelectric Module**

## **TEC1-19908S**


## Performance Curves at Th=27 °C


# Performance Curves at Th=50 °C





Standard Performance Graph COP = f(V) of  $\Delta T$  ranged from 0 to 30 °C





Standard Performance Graph COP = f(V) of  $\Delta T$  ranged from 40 to 60/70 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power (V × I).

# **Operation Cautions**

- Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating
- Storage module below 100 °C
- Operation below I<sub>max</sub> or V<sub>max</sub>
- Work under DC